(

PERIODIC TEST

Batch - 2006(M) [Medical]

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose. You are not allowed to leave the Examination Hall before the end of the test.

INSTRUCTIONS

1. This booklet is your Question Paper containing $\mathbf{1 8 0}$ questions.
2. The test is of $\mathbf{3}$ hours duration. The question paper consists of $\mathbf{3}$ sections (Physics, Chemistry \& Biology).
3. Each question carries 4 marks. For each correct response the candidate will get $\mathbf{4}$ marks. For each incorrect response, one mark will be deducted. The maximum marks are 720.
4. Fill the bubbles completely and properly using a Blue/Black Ball Point Pen only.
5. Blank papers, clipboards, log tables, slide rules, calculators, cellular phones, pagers, and electronic gadgets in any form are not allowed to be carried inside the examination hall.
6. The answer sheet, a machine-readable Optical mark recognition sheet (OMR Sheet), is provided separately.
7. DO NOT TAMPER WITH / MUTILATE THE OMR OR THE BOOKLET.
8. Do not break the seals of the question-paper booklet before being instructed to do so by the invigilator.

Name of the Candidate (in Capitals) \qquad

Test Centre \qquad Centre Code \qquad

Candidate's Signature \qquad Invigilator's Signature \qquad

PHYSICS

1. A wheel of radius 1 m rolls forward half a revolution on a horizontal ground. The magnitude of the displacement of the point of the wheel initially incontact with the ground (in m) is :
(a) 2π
(b) $\sqrt{2} \pi$
(c) $\sqrt{\pi^{2}+4}$
(d) π
2. An aeroplane moves 400 m towards north, 300 m towards west and then 1200 m vertically upwards. Then its displacement from its initial position is :
(a) 1500 m
(b) 1400 m
(c) 1300 m
(d) 1250 m
3. Which of the following velocity-time graphs shows a realistic situation for a body in motion?
(a)

(b)

(c)

(d)

4. Which of the following statements is incorrect?
(i) Displacement is independent of the choice of origin of the axis
(ii) Displacement may or may not be equal to the distance traveled
(iii) When a particle returns to its starting point its displacement is not zero
(iv) Displacement tells the nature of the actual motion of a particle between the points.
(a) (i) and (ii)
(b) (ii) and (iii)
(c) (iii) and (iv)
(d) (i) and (iv)
5. A body covers one third of the distance with velocity v_{1}, the second one third of the distance with a velocity ν_{2} and the remaining distance with a velocity ν_{3}. The average velocity is
(a) $\frac{v_{1}+v_{2}+v_{3}}{3}$
(b) $\frac{v_{1} v_{2} v_{3}}{3}$
(c) $\frac{3 v_{1} v_{2} v_{3}}{v_{1} v_{2}+v_{2} v_{3}+v_{3} v_{1}}$
(d) $\frac{v_{1} v_{2}+v_{2} v_{3}+v_{3} v_{1}}{3}$
6. A particle moving in a straight line covers half the distance with speed $4 \mathrm{~m} / \mathrm{s}$. The other half of the distance is covered in two equal nine intervals with speed $5 \mathrm{~ms}^{-1}$ and $7 \mathrm{~m} / \mathrm{s}$ respectively. The average speed of the particle during this motion is
(a) $6.4 \mathrm{~ms}^{-1}$
(b) $5.8 \mathrm{~ms}^{-1}$
(c) $48 \mathrm{~ms}^{-1}$
(d) $4.2 \mathrm{~ms}^{-1}$
7. The ratio of the numerical values of the average velocity and average speed of a body is always
(a) unity
(b) unity or less
(c) unity or more
(d) less than unity
8. A cyclist starts from the centre O of a circular park of radius one kilometre, reaches the edge P of the park, then cycles along the circumference and returns to the centre along $Q O$ as shown in the figure. If the round trip takes 10 minutes, the net displacement and average speed of the cyclist (in metre and kilometer per hour) is
(a) 0,1
(b) $\frac{\pi+4}{2}, 0$
(c) $4, \frac{\pi+4}{2}$
(d) $0,21.4$

9. The magnitude of average velocity is equal to the average speed when a point mass body moves
(a) with constant acceleration
(b) with constant retardation
(c) in the same direction
(d) on a curved path
10. The coordinates of a moving particle at time t are given by $x=c t^{3}$ and $y=b t^{3}$. The speed of the particle is:
(a) $3 t^{2}(c+b)$
(b) $3 t^{2} \sqrt{c^{2}-b^{2}}$
(c) $t^{2} \sqrt{c^{2}+b^{2}}$
(d) $3 t^{2} \sqrt{c^{2}+b^{2}}$
11. The displacement time graph of a body moving along a straight line is as shown in figure. Which of the following graphs figure represents the velocity-time graph for the motion of that body?

(a)

(b)

(c)

(d)

12. What will be the ratio of speed in first two seconds to the speed in next 4 seconds?
(a) $\sqrt{2}: 1$
(b) $3: 1$
(c) $2: 1$
(d) $1: 2$

13. A rod of length l leans by its upper end against a smooth vertical wall, while its other end leans against the floor. The end that leans against the wall moves uniformly downwards. Then
(a) the other end also moves uniformly
(b) the speed of other end goes on increasing
(c) the speed of other end goes on decreasing.
(d) the speed of other end first decreases and then increase

14. A particle moves along x axis in such a way that its x-coordinate varies with time t according to the equation $x=\left(8-4 t+6 t^{2}\right)$ metre. The velocity of the particle will vary with time according to the graph:
(a)

(b)

(c)

(d)

15. The position of an object moving along x-axis is given by $x=a+b t^{2}$, where $a=8.5 \mathrm{~m}$ and $b=2.5 \mathrm{~ms}^{-2}$ and t is measured in seconds. What is the instantaneous velocity at time $t=2.0$ second?
(a) $5 \mathrm{~ms}^{-1}$
(b) $7.5 \mathrm{~ms}^{-1}$
(c) $10 \mathrm{~ms}^{-1}$
(d) $12.5 \mathrm{~ms}^{-1}$
16. The speed-time graph of a particle moving along a fixed direction is shown in figure. What are the distance travelled and the average speed of the particle over the time interval $t=0$ to $t=10 \mathrm{~s}$?
(a) $50 \mathrm{~m} ; 5 \mathrm{~ms}^{-1}$
(b) $60 \mathrm{~m} ; 6 \mathrm{~ms}^{-1}$
(c) $40 \mathrm{~m}, 4 \mathrm{~ms}^{-1}$
(d) $70 \mathrm{~m}, 7 \mathrm{~ms}^{-1}$

17. Two straight lines A and B drawn on the same displacement-time graph make angles 45° and 30° with time axis respectively, figure. The ratio of velocity of A to the velocity of B is :
(a) $\sqrt{3}$
(b) $\frac{1}{\sqrt{3}}$
(c) 3

(d) $3 / 2$
18. A particle starts from rest at $t=0$ and moves in a straight line with an acceleration as shown in figure. The velocity of the particle at $t=3 \mathrm{~s}$ is
(a) $2 \mathrm{~ms}^{-1}$
(b) $4 \mathrm{~ms}^{-1}$
(c) $6 \mathrm{~ms}^{-1}$
(d) $8 \mathrm{~ms}^{-1}$

19. If for a particle position $x \propto t^{2}$ then
(a) velocity is constant
(b) acceleration is constant
(c) acceleration is variable
(d) none of these
20. A body starting from rest moves along a straight line with a constant acceleration. The variation of speed (V) with distance (S) is represented by the graph
(a)

(b)

(c)

(d)

21. Calculate the mass of CH_{4} in a 9 liters cylinder at 16 atm and $27^{\circ} \mathrm{C}$?
(a) 94 g
(b) 47 g
(c) 141 g
(d) None of these
22. Find the pressure exerted by 10^{23} gas molecules each of mass $10^{-23} \mathrm{~g}$ in a container of volume 2 liters. Given $V_{\mathrm{rms}}=1000 \mathrm{~m} / \mathrm{s}$?
(a) 1.37 atm
(b) 1.67atm
(c) 1.97 atm
(d) None of these
23. At a certain pressure and $127^{\circ} \mathrm{C}$ the mean K.E of hydrogen molecules is $8 \times 10^{-21} \mathrm{~J}$. What is the mean K.E of hydrogen molecules at same pressure and at a temperature $27^{\circ} \mathrm{C}$?
(a) $6 \times 10^{-19} \mathrm{~J}$
(b) $6 \times 10^{-20} \mathrm{~J}$
(c) $6 \times 10^{-21} \mathrm{~J}$
(d) None of these
24. The rms speed of hydrogen at NTP is $v \mathrm{~m} / \mathrm{s}$. If the gas is heated at constant pressure till its volume is three folds, what will be its final temp and rms speed?
(a) $819 \mathrm{k} \sqrt{3} v \mathrm{~m} / \mathrm{s}$
(b) $409 \mathrm{k} \sqrt{3} v \mathrm{~m} / \mathrm{s}$
(c) $204 \mathrm{k} \sqrt{3} v \mathrm{~m} / \mathrm{s}$
(d) None of these
25. Calculate the temperature of sun. Given the density of sun is $1.4 \mathrm{~g} / \mathrm{cc}$, pressure is $1.4 \times 10^{9} \mathrm{~atm}$ and average molecular weight of gases in the sun is 2 .
(a) $2.4 \times 10^{6} \mathrm{k}$
(b) $2.4 \times 10^{7} \mathrm{k}$
(c) $2.4 \times 10^{8} \mathrm{k}$
(d) None of these
26. Find the temp at which rms velocity of a gas will be half of its value at $0^{\circ} \mathrm{C}$, pressure remaining constant?
(a) 68.25 K
(b) 34.25 K
(c) 102.25 K
(d) None of these
27. Calculate the diameter of a molecule if $\mathrm{n}=2.79 \times 10^{25}$ molecules per m^{3} and mean free path is $2.2 \times 10^{-8} \mathrm{~m}$?
(a) 0.101 nm
(b) 0.303 nm
(c) 0.606 nm
(d) None of these
28. A mixture of hydrogen and nitrogen has volume 2000 cc , temp 300 k , pressure 100 kpa and mass 0.76 g . Calculate the masses of hydrogen and nitrogen in the mixture?
(a) $0.6 \mathrm{~g}, 0.32 \mathrm{~g}$
(b) $0.12 \mathrm{~g}, 0.64 \mathrm{~g}$
(c) $0.18 \mathrm{~g}, 0.96 \mathrm{~g}$
(d) None of these
29. Two closed vessels of equal volume contains air at $105 \mathrm{kpa}, 300 \mathrm{k}$ and are connected through a narrow tube. If one of the vessels is now maintained at 300 k and the other at 400 k , what will the pressure in the vessel?
(a) 30 kpa
(b) 60 kpa
(c) 120 kpa
(d) None of these
30. A vessel contains 14 g of hydrogen and 96 g of oxygen at STP. Find the volume of vessel? Chemical reaction is induced in it by passing electric spark till one of the gas is consumed. The temp is brought back to its starting value 273 k . Find the pressure in the vessel?
(a) $0.23 \mathrm{~m}^{3}, 0.1 \mathrm{~atm}$
(b) $0.46 \mathrm{~m}^{3}, 0.1 \mathrm{~atm}$
(c) $0.69 \mathrm{~m}^{3}, 0.1 \mathrm{~atm}$
(d) None of these
31. Calculate the rms speed of nitrogen at STP[pressure $=1 \mathrm{~atm}$ and temperature $=0^{\circ} \mathrm{C}$]. The density of nitrogen in these conditions is $1.25 \mathrm{~kg} / \mathrm{m}^{3}$.
(a) $245 \mathrm{~m} / \mathrm{s}$
(b) $490 \mathrm{~m} / \mathrm{s}$
(c) $735 \mathrm{~m} / \mathrm{s}$
(d) None of these
32. If the rms speed of nitrogen molecules is $490 \mathrm{~m} / \mathrm{s}$ at 273 K then find rms speed of hydrogen molecules at the same temp.?
(a) $915 \mathrm{~m} / \mathrm{s}$
(b) $1830 \mathrm{~m} / \mathrm{s}$
(c) $2745 \mathrm{~m} / \mathrm{s}$
(d) None of these
33. Find rms speed of oxygen molecules at 300 K ?
(a) $483 \mathrm{~m} / \mathrm{s}$
(b) $241 \mathrm{~m} / \mathrm{s}$
(c) $724 \mathrm{~m} / \mathrm{s}$
(d) None of these
34. A barometer reads 75 cm of mercury. When $2 \mathrm{~cm}^{3}$ of air at atmospheric pressure is introduced into the space above the mercury level the volume of this space becomes $50 \mathrm{~cm}^{3}$. Find the length by which mercury column descends?
(a) 1 cm of Hg
(b) 2 cm of Hg
(c) 3 cm of Hg
(d) None of these
35. A barometer tube is 1 m long and $2 \mathrm{~cm}^{2}$ in cross section. Mercury stands to a height of 75 cm in the tube. When a small amount of oxygen is introduced in the space above the mercury level, the level of mercury falls by 5 cm . Calculate the mass of oxygen introduced. Room temp. $=27^{\circ} \mathrm{C}, \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and density of mercury is $13600 \mathrm{~kg} / \mathrm{m}^{3}$?
(a) 2.62 mg
(b) 7.86 mg
(c) 5.24 mg
(d) None of these
36. 1 kg of water is contained in a 1.25 kW kettle. Calculate the time taken for the temperature of water to rise from $25^{\circ} \mathrm{C}$ to its boiling point $100^{\circ} \mathrm{C}$. Specific heat capacity of water is $4.2 \mathrm{j} / \mathrm{gk}$.
(a) 4 mins 12 s
(b) 2 mins 6 s
(c) 6 mins 18 s
(d) None of these
37. 50 g of ice at $0^{\circ} \mathrm{C}$ is added to 300 g of liquid at $30^{\circ} \mathrm{C}$. Find the final temperature of mixture when all the ice has melted. Specific heat capacity of water is $4.2 \mathrm{j} / \mathrm{gk}$, specific heat capacity of liquid is $2.65 \mathrm{j} / \mathrm{gk}$ and latent heat of melting of ice is $336 \mathrm{j} / \mathrm{g}$?
(a) Nearly $3^{\circ} \mathrm{C}$
(b) Nearly $5^{\circ} \mathrm{C}$
(c) Nearly $7^{\circ} \mathrm{C}$
(d) None of these
38. 2 kg of ice melts when water at $100^{\circ} \mathrm{C}$ is poured in a hole drilled in a block of ice. What was the mass of water used? Specific heat capacity of water is $4200 \mathrm{j} / \mathrm{kgk}$ and latent heat of fusion of ice is $336 \mathrm{j} / \mathrm{g}$.
(a) 1.6 kg
(b) 1.4 kg
(c) 1.2 kg
(d) None of these
39. 350 g of water at $30^{\circ} \mathrm{C}$ is contained in a copper vessel of 50 g . Calculate the mass of ice required to bring down the temperature of vessel and its contents to $5^{\circ} \mathrm{C}$. Given that the specific latent heat of fusion of ice is $336 \mathrm{j} / \mathrm{g}$, specific heat capacity of copper is $0.4 \mathrm{j} / \mathrm{gk}$ and specific heat capacity of water is $4.2 \mathrm{j} / \mathrm{gk}$.
(a) 52 g
(b) 104 g
(c) 156 g
(d) None of these
40. A molten metal of mass 150 g is kept at its melting point of $800^{\circ} \mathrm{C}$ and when it is allowed to freeze at the same temp then it liberates 75000 J of heat energy. Calculate the specific latent heat of metal?
(a) $500 \mathrm{j} / \mathrm{g}$
(b) $250 \mathrm{j} / \mathrm{g}$
(c) $300 \mathrm{j} / \mathrm{g}$
(d) None of these
41. Calculate the power of an electric heater required to melt 1 kg ice at $0^{\circ} \mathrm{C}$ in 30 s , if the efficiency of heater is 40%. Take the specific latent heat of ice as $336 \mathrm{j} / \mathrm{g}$.
(a) 14 kw
(b) 28 kw
(c) 42 kw
(d) None of these
42. A vessel of mass 100 g contains 150 g of water at $30^{\circ} \mathrm{C}$. How much ice is needed to cool it to $5^{\circ} \mathrm{C}$? Take specific heat capacity of material of vessel as $0.4 \mathrm{j} / \mathrm{gk}$, specific latent heat of fusion of ice as $336 \mathrm{j} / \mathrm{g}$ and specific heat capacity of water as $4.2 \mathrm{j} / \mathrm{gk}$.
(a) 46.92 g
(b) 23.46 g
(c) 70.38 g
(d) None of these
43. What mass of a liquid A of specific heat capacity $0.84 \mathrm{j} / \mathrm{gk}$ and at a temp of $40^{\circ} \mathrm{c}$ must be mixed with 100 g of liquid B of specific heat capacity $2 \mathrm{j} / \mathrm{gk}$ and at $20^{\circ} \mathrm{C}$, so that the temperature of mixture becomes $32^{\circ} \mathrm{C}$?
(a) 179 g
(b) 537 g
(c) 358 g
(d) None of these
44. A calorimeter of water equivalent 15 g contains 165 g of water at $25^{\circ} \mathrm{c}$. Steam at $100^{\circ} \mathrm{c}$ is passes through it for some time. The temperature is increased to $30^{\circ} \mathrm{c}$ and the mass of calorimeter and its content rises by 1.5 g . Calculate the specific latent heat of vaporization of water? Specific heat capacity of water is $1 \mathrm{cal} / \mathrm{gk}$.
(a) $530 \mathrm{cal} / \mathrm{g}$
(b) $265 \mathrm{cal} / \mathrm{g}$
(c) $795 \mathrm{cal} / \mathrm{g}$
(d) None of these
45. A lead bullet penetrates into a solid object and melts. Assuming that 50% of its kinetic energy was used to heat it, calculate the initial speed of bullet? The initial temp of the bullet is $27^{\circ} \mathrm{C}$ and its melting point is $327^{\circ} \mathrm{C}$. Latent heat of fusion of lead is $25 \mathrm{j} / \mathrm{g}$ and specific heat capacity of lead is $0.125 \mathrm{j} / \mathrm{gk}$.
(a) $500 \mathrm{~m} / \mathrm{s}$
(b) $250 \mathrm{~m} / \mathrm{s}$
(c) $750 \mathrm{~m} / \mathrm{s}$
(d) None of these

CHEMISTRY

46. Which is the most stable carbocation?
(a) $\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{\mathrm{C}}$
(b)

(c)

(d) $\left(\mathrm{CH}_{3}\right)_{2} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}$
47. Which comparison is not correct as indicated?
(a)

(b)

(c)

(d)

48. Which is maximum acidic?
(a)

(b)

(c)

(d)

49. Increasing order of pK_{a} values $\left(\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}\right)$ of $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ is
(a) $\mathrm{H}_{2} \mathrm{O}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(b) $\mathrm{CH}_{3} \mathrm{OH}<\mathrm{H}_{2} \mathrm{O}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CH}_{3} \mathrm{OH}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{H}_{2} \mathrm{O}$
50. Select the incorrect statement.
(a) Electron-withdrawing inductive effect of the carbonyl group in - COOH group weakens the $\mathrm{O}-\mathrm{H}$ bond and favours ionisation of a carboxylic acid compared with an alcohol
(b) Inductive effect of the chlorine destabilises the acid and stabilizes the conjugate base
(c) Aniline is a weaker base than ammonia
(d) Phenol is a weaker acid than water
51. Inductive effect involves:
(a) Delocalisation of σ - electrons
(b) Partial displacement of σ - electrons
(c) Delocalisation of π-electrons
(d) Displacement of lone pair electrons
52. Select correct statement about I effect?
(a) I effect transfers electrons from one carbon atom to another
(b) I effect is the polarisation of σ bond electrons
(c) I effect creates net charge in the molecule
(d) I effect is distance independent
53. Which of the following group shows +I -effect:
(a) -Br
(b) -COOH
(c) -OR
(d) $-\mathrm{COO}^{-}$
54. Which of the following alkyl groups has the maximum +I effect?
(a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-$
(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2}-$
(d) CH_{3}^{-}
55. Decreasing -I effect of given groups is :
(i) CN
(ii) NO_{2}
(iii) NH_{2}
(iv) F
(a) iii $>$ ii $>$ i $>$ iv
(b) ii $>$ iii $>$ iv $>$ i
(c) iii $>$ ii $>$ iv $>$ i
(d) ii $>$ i $>$ iv $>$ iii
56. Which of the following is the strongest -I group :
(a) $-{ }^{+} \mathrm{NF}_{3}$
(b) $-\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}$
(c) $-\stackrel{+}{\mathrm{S}}\left(\mathrm{CH}_{3}\right)_{2}$
(d) -F
57. In which of the following species, incorrect direction of inductive effect is shown?
(a)

(b)

(c)

(d)

58. Maximum hyperconjugation is observed in
(a)

(b)

(c) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$
(d)

59. Following carbocation changes to more stable carbocation
(a)

(b)

(c)

(d)

60. In the following, electrophile is $\mathrm{HO}-\mathrm{NO}_{2}$
(a) H^{\oplus}
(b) $\mathrm{NO}_{3}{ }^{\oplus}$
(c) $\mathrm{NO}_{2}{ }^{\oplus}$
(d) OH^{\ominus}
61. The observed dipole moment of HCl molecule is 1.03 D . If $\mathrm{H}-\mathrm{Cl}$ bond distance is $1.275 \AA$ and electronic charge is 4.8×10^{-10} e.s.u. The $\%$ polarity in HCl will be
(a) $1.275 \times 1.03 \%$
(b) $\frac{4.8 \times 1.275 \times 10^{-8}}{1.03} \%$
(c) $\frac{1.03 \times 100}{4.8 \times 1.275} \%$
(d) $\frac{4.8 \times 10^{-10}}{1.03} \times 100 \%$
62. Which of the following has same bond order as NO^{+}has?
(a) CN^{-}
(b) O_{2}^{-}
(c) CN^{+}
(d) none of them
63. Among $\mathrm{KO}_{2}, \mathrm{AlO}_{2}^{-}, \mathrm{BaO}_{2}$ and NO_{2}^{+}, unpaired electron is present in
(a) $\mathrm{NO}_{2}^{+}, \mathrm{BaO}_{2}$
(b) KO_{2} and AlO_{2}^{-}
(c) KO_{2} only
(d) BaO_{2} only
64. The hybridisation and shape of ClO_{3}^{-}is
(a) sp^{3} and tetrahedral
(b) sp^{3} and triangular pyramidal
(c) sp^{3} and triangular planar
(d) $\mathrm{sp}^{3} \mathrm{~d}$ and trigonal bipyramidal
65. The correct order of increasing covalent character of the following is
(a) $\mathrm{SiCl}_{4}<\mathrm{AlCl}_{3}<\mathrm{CaCl}_{2}<\mathrm{KCl}$
(b) $\mathrm{KCl}<\mathrm{CaCl}_{2}<\mathrm{AlCl}_{3}<\mathrm{SiCl}_{4}$
(c) $\mathrm{AlCl}_{3}<\mathrm{CaCl}_{2}<\mathrm{KCl}<\mathrm{SiCl}_{4}$
(d) none of these
66. Which of the following is planar?
(a) XeO_{4}
(b) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(c) $\mathrm{XeO}_{3} \mathrm{~F}_{2}$
(d) XeF_{4}
67. Which of the following does not contain coordinate bond?
(a) BH_{4}^{-}
(b) NH_{4}^{+}
(c) CO_{3}^{2-}
(d) $\mathrm{H}_{3} \mathrm{O}^{+}$
68. The correct order in which the $\mathrm{O}-\mathrm{O}$ bond length increases in the following is
(a) $\mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{H}_{2} \mathrm{O}_{2}$
(b) $\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{O}_{2}$
(c) $\mathrm{O}_{3}<\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}_{2}$
(d) $\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{3}$
69. Which concept best explains that o-nitrophenol is more volatile than p-nitrophenol?
(a) Resonance
(b) Steric hinderance
(c) Hydrogen bond
(d) Hyperconjugation
70. Which species has the maximum number of lone pair of electrons on the central atom?
(a) ClO_{3}^{-}
(b) XeF_{4}
(c) SF_{4}
(d) I_{3}^{-}
71. Molecular orbital electronic configuration for $\mathrm{X}_{2}^{\mathrm{n}-}$ anion is
$\mathrm{KK}^{*}(\sigma 2 \mathrm{~s})^{2}\left({ }^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{x}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{y}}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left({ }^{*} \pi 2 \mathrm{p}_{x}\right)^{1}$
The anion $\mathrm{X}_{2}^{\mathrm{n}-}$ is
(a) N_{2}^{-}
(b) O_{2}^{-}
(c) N_{2}^{2-}
(d) O_{2}^{2-}
72. Among the following compounds, the one that is polar and has the central atom with $s p^{2}$ hybridization is
(a) $\mathrm{H}_{2} \mathrm{CO}_{3}$
(b) SiF_{4}
(c) BF_{3}
(d) HClO_{2}
73. In which of the following species the bond angle around the central atom is equal to 120° ?
(I) BF_{3}
(II) BCl_{3}
(III) BF_{4}^{-}
(IV) SO_{3}
(a) (I)
(b) (I), (II) and (IV)
(c) (II) and (IV)
(d) (I) and (III)
74. Which among the following species is most stable?
(a) He_{2}
(b) He_{2}^{+}
(c) He_{2}^{2+}
(d) H_{2}
75. If MX_{3} is T shaped, then the number of lone pair around M is
(a) 2
(b) 0
(c) 3
(d) 5

76 Out of the four planar molecules given below which one has μ (dipole moment) $=0$?
(a) cis $-\mathrm{ClCH}=\mathrm{CHCl}$
(b) trans $-\mathrm{ClCH}=\mathrm{CHCl}$
(c) $\mathrm{CH}_{2}=\mathrm{CHCl}$
(d) $\mathrm{CH}_{2}=\mathrm{CCl}_{2}$
77. In the formation of N_{2}^{+}from N_{2}, the electron is lost from a
(a) σ-orbital
(b) π-orbital
(c) σ^{*}-orbital
(d) π^{*}-orbital
78. Which of the following is arranged in order of increasing dipole moment?
(a) $\mathrm{BCl}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NF}_{3}$
(b) $\mathrm{BCl}_{3}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{BCl}_{3}$
(d) $\mathrm{H}_{2} \mathrm{O}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{BCl}_{3}$
79. Which pair is isostructural and possesses same number of lone pair of electron on central atom?
(a) IF_{5} and XeOF_{4}
(b) NH_{3} and ClO_{4}^{-}
(c) SnCl_{4} and ClO_{3}^{-}
(d) AlCl_{3} and SO_{2}
80. Arrange the following compounds in order of increasing dipole moment:
(i) toluene
(ii) m-dichlorobenzene
(iii) o-dichlorobenzene
(iv)p-dichlorobenzene
(a) (i) < (iv) < (ii) < (iii)
(b) (iv) < (i) < (ii) < (iii)
(c) (iv) < (i) < (iii) < (ii)
(d) (iv) $<$ (ii) < (i) < (iii)
81. What is the maximum mass (in grams) of NO that could be obtained from 15.5 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 4.68 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ when they react? The balanced equation is

$$
2 \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow 6 \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}
$$

(a) 4.38
(b) 5.04
(c) 15.2
(d) 26.2
82. A 7.66 g sample of hydrated sodium sulphate $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ forms 4.06 g of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. What is the value of $x ?\left(\mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}=142\right)$
(a) 0.2
(b) 3.0
(c) 5
(d) 7
83. Silver metal reacts with HNO_{3} according to equation
$3 \mathrm{Ag}(\mathrm{s})+4 \mathrm{HNO}_{3}(\mathrm{~g}) \longrightarrow 3 \mathrm{AgNO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
What volumes of $1.15 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$ is required to react with 0.784 g of Ag ?
(a) 4.74 mL
(b) 6.32 mL
(c) 8.43 mL
(d) 25.3 mL
84. How many grams of NaBr could be formed if 14.2 g of NaI are reacted with 40.0 mL of a $0.800 \mathrm{M} \mathrm{Br}_{2}$?

$$
2 \mathrm{NaI}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{NaBr}+\mathrm{I}_{2}
$$

(a) 3.30
(b) 4.80
(c) 6.59
(d) 9.75
85. If 0.5 moles of BaCl_{2} is mixed with 0.2 moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, the maximum moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ obtained is
(a) 0.2
(b) 0.5
(c) 0.3
(d) 0.1
86. The mass of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ produced if 48 g of Mg metal is reacted with $34 \mathrm{~g} \mathrm{NH}_{3}$ gas is
$3 \mathrm{Mg}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
(a) $\frac{200}{3}$
(b) $\frac{100}{3}$
(c) $\frac{400}{3}$
(d) $\frac{150}{3}$
87. A mixture of N_{2} and H_{2} is caused to react in a closed container to form NH_{3}. The reaction ceases before either reactant has been totally consumed. At this stage, 2.0 moles each of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} are present. The moles of N_{2} and H_{2} present originally were respectively,
(a) 4 and 4 moles
(b) 3 and 5 moles
(c) 3 and 4 moles
(d) 4 and 5 moles
88. How many moles of P_{4} can be produced by reaction of 0.10 moles $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}, 0.36$ moles SiO_{2} and 0.90 moles C according to the following reaction ?

$$
4 \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}+18 \mathrm{SiO}_{2}+30 \mathrm{C} \longrightarrow 3 \mathrm{P}_{4}+2 \mathrm{CaF}_{2}+18 \mathrm{CaSiO}_{3}+30 \mathrm{CO}
$$

(a) 0.060
(b) 0.030
(c) 0.045
(d) 0.075
89. For a reaction,
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$; identify dihydrogen $\left(\mathrm{H}_{2}\right)$ as a limiting reagent in the following reaction mixtures.
(a) 56 g of $\mathrm{N}_{2}+10 \mathrm{~g}$ of H_{2}
(b) 28 g of $\mathrm{N}_{2}+6 \mathrm{~g}$ of H_{2}
(c) 35 g of $\mathrm{N}_{2}+8 \mathrm{~g}$ of H_{2}
(d) $14 g$ of $\mathrm{N}_{2}+4 g$ of H_{2}
90. Consider the following reaction, $2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$

What gram of $\mathrm{H}_{2} \mathrm{O}$ is formed if 2 g of H_{2} reacts with 1 g of O_{2} ?
(a) 3.0 g
(b) 1.125 g
(c) 4.5 g
(d) 2.50 g
91. Pteridophytes:
(a) Include horsetails and ferns
(b) Are used for medicinal purposes and soil binders
(c) Are also frequently grown as ornaments
(d) All are correct
92. The pteridophytes:
(a) Are found in cool, damp and shady places
(b) May be found in sandy soil
(c) Require water for fertilization
(d) More than one option is correct
93. Read the following statements w.r.t. pteridophytes:
(i) Majority of the pteridophytes are heterosporous
(ii)Selaginella and Salvinia are homosporous
(iii) The megaspore germinate to form male gametophyte
(iv) Pteridophytes may show seed formation in few cases
(v)Selaginella is a type of fern

How many of the above statements are incorrect?
(a) Five
(b) Two
(c) Three
(d) Four
94. Match the columns

Column - I

A. Psilopsida
(i) Dryopteris, Pteris and Adiantum
B. Lycopsida
(ii) Equisetum
C. Sphenopsida
(iii) Selaginella and Lycopodium
D. Pteropsida

Column - II

(a) $\mathrm{A}-$ (i), $\mathrm{B}=$ (iv), $\mathrm{C}=$ (iii), $\mathrm{D}=$ (ii)
(b) $\mathrm{A}=(\mathrm{ii}), \mathrm{B}=$ (iv), $\mathrm{C}=(\mathrm{iii}), \mathrm{D}=(\mathrm{i})$
(c) $\mathrm{A}=(\mathrm{i}), \quad \mathrm{B}=$ (ii), $\mathrm{C}=$ (iii), $\mathrm{D}=$ (iv)
(d) $\mathrm{A}=(\mathrm{iv}), \mathrm{B}=(\mathrm{iii}), \mathrm{C}=(\mathrm{ii}), \mathrm{D}=(\mathrm{i})$
95. An aquatic fern is:
(a) Salvinia
(b) Dryopteris
(c) Lycopodium
(d) Equisetum
96. In gymnosperms:
(a) Ovules are not enclosed by ovary
(b) Ovules remain exposed both before and after fertilization
(c) Seeds are naked and not covered by fruit
(d) All are correct
97. Read the following statements:
(i) The redwood tree, Sequoia, is one of the tallest tree species
(ii) Mycorrhizal roots are found in Pinus and coralloid roots in Cycas
(iii) The roots of gymnosperms are generally tap roots
(iv) In gymnosperms, stems may be unbranched (e.g., Pinus) or branched (e.g., Cycas)
(v) In Cycas, the pinnate leaves persist for a few years

How many of the above statements are correct?
(a) Four
(b) Five
(c) Two
(d)Three
98. In gymnosperms:
(a) The megaspore mother cell divides meiotically to form four megaspores
(b) One of the megaspores enclosed within the megasporangium develops into a multicellular female gametophyte that bears two or morel archegonia
(c) The multicellular female gametophyte is also retained within the megasporangium
(d) All are correct
99. Identity the plant and the structures marked A, B and C :
(a) Pinus, $\mathrm{A}=$ Long shoot, $\mathrm{B}=$ Dwarf shoot, $\mathrm{C}=$ Seed
(b) Cycas, $\mathrm{A}=$ Long shoot, $\mathrm{B}=$ Dwarf shoot, $\mathrm{C}=$ Seed
(c) Ginkgo, $\mathrm{A}=$ Long shoot, $\mathrm{B}=$ Dwarf shoot, $\mathrm{C}=$ Fruits
(d) Ginkgo, $\mathrm{A}=$ Dwarf shoot, $\mathrm{B}=$ Long shoot, $\mathrm{C}=$ Seed

100. Select the correct incorporation sequence of one structure within the other in a gymnosperm:
(a) Spores \rightarrow Sporophylls \rightarrow Strobilus \rightarrow Sporangia
(b) Sporangia \rightarrow Spores \rightarrow Sporophylls \rightarrow Strobilus
(c) Sporangia \rightarrow Strobilus \rightarrow Sporophylls \rightarrow Spores
(d) Spores \rightarrow Sporangia \rightarrow Sporophylls \rightarrow Strobilus
101. Read the following statements w.r.t. gymnosperms:
(i) Endosperm is haploid and represents the female gametophyte
(ii) Pinus is a monoecious plant
(iii) They show siphonogamy
(iv) Cycas shows both zooidogamy and siphonogamy
(v)Pinus and Cedrus have branched stem

How many of the above statements are correct?
(a) Four
(b) Three
(c) Five
(d) Two
102. Gymnosperms do not form:
(a) Shrubs
(b) Tall trees
(c) Short trees
(d) Herbs
103. Select the haploid structure of gymnosperms:
(a) Embryo, endosperm, megaspore
(b) Leaf, embryo, endosperm
(c) Pollen, embryo, endosperm
(d) Endosperm, pollen, megaspore
104. Heterospory is found in all members of \qquad and few members of \qquad :
(a) Spermatophytes, pteridophytes
(b) Pteridophytes, spermatophytes
(c) Bryophytes, pteridophytes
(d) Pteridophytes, gymnosperms
105. Flowers are present in:
(a) Gymnosperms
(b) Angiosperms
(c) Pteridophytes
(d) Bryophytes
106. Pollination in gymnosperms is mainly:
(a) Anemophilous
(b) Hydrophilous
(c) Entomophilous
(d) Ornithophilous
107. Double fertilization is a characteristic of:
(a) Angiosperms
(b) Gymnosperms
(c) Bryophytes
(d) Pteridophytes
108. The life cycle pattern shown below is seen in which group of plants?

(a) In algae only
(b) In bryophytes and pteridophytes
(c) In gymnosperms only
(d) In algae and gymnosperms
109. Match the following columns:

Column-I

A. Organ-system level organisation
B. Tissue level organisation
C. Organ level organisation
D. Cellular level organisation
(a) $\mathrm{A}=(\mathrm{iv}), \mathrm{B}=(\mathrm{ii}), \mathrm{C}=(\mathrm{i}), \mathrm{D}=($ (iii)
(b) $\mathrm{A}=(\mathrm{iii}), \mathrm{B}=(\mathrm{i}), \quad \mathrm{C}=(\mathrm{ii}), \mathrm{D}=(\mathrm{iv})$
(c) $\mathrm{A}=(\mathrm{iv}), \mathrm{B}=(\mathrm{iii}), \mathrm{C}=(\mathrm{i}), \mathrm{D}=(\mathrm{iv})$
(d) $\mathrm{A}=(\mathrm{iii}), \mathrm{B}=(\mathrm{i}), \mathrm{C}=(\mathrm{ii}), \mathrm{D}=(\mathrm{iv})$
110. How many of the examples mentioned below possess closed (C) and open (O) circulatory system?

Cephalopod molluses, non-cephalopod molluses, Chordates, Annelids, Tunicates, Hemi-chordates and Arthropods
(a) $\mathrm{C}=2, \mathrm{O}=5$
(b) $\mathrm{C}=4, \mathrm{O}=3$
(c) $\mathrm{C}=5, \mathrm{O}=2$
(d) $\mathrm{C}=3, \mathrm{O}=4$
111. Find the incorrect match w.r.t. body plan:
(a) Tube - within-tube body plan :
(b)Cell-aggregate type body plan
:
(c) Blind-sac type body plan
(d)Cell-aggregate type body plan
Nemathelminthes, Annelida, Arthropoda Mollusca, Echinodermata Chordata
Coelenterates
: Platyhelminthes and Coelenterates
: Porifera
112. Metamerism is absent in:
(a) Annelids
(b) Platyhelminthes
(c) Arthropods
(d) Chordates
113. Read the following statements about the phylum Porifera:
(i) Commonly known as sponges
(ii) Are generally found in freshwater and are mostly symmetric animals
(iii) Possess water transport canal system
(iv) The body is supported by endoskeleton made up of spicules or spongin fibres
(v)Fertilization is external

Which of the above statements are correct?
(a) (iii), (v)
(b) (i), (ii), (iii)
(c) (i), (hi), (iv)
(d)(ii), (v)

A
(a) Euspongia
(b) Spongilla
(c) Spongilla
(d) Sycon

B
Spongilla
Euspongia Sycon
Euspongia

C
Sycon
Sycon
Euspongia
Spongilla
115. Which of the following is an important evolutionary development seen for the first time in the sponges?
(a) Multicellular structure
(b) Bilateral symmetry
(c) Intracellular digestion
(d) Presence of nerve net/nerve cells
116. Identify the organisms A, B and C :

(C)

A
(a) Pleurobrachia
(b) Aurelia
(c) Pleurobrachia
(d) Aurelia

B

$$
C
$$

117. Read the following statements w.r.t. cnidarians:
(i) Cnidarians exhibit tissue level of organisation and are triploblastic
(ii)Digestion is extracellular and intracellular
(iii) Corals secrete calcium bicarbonate to form a soft skeleton commonly
(iv) Corals may harbour some photosynthetic dinoflagellates for taking nutrition
(v) They possess a central gastro-vascular cavity with a single opening, mouth on hypostome.

Which of the above statements are correct?
(a) (i), (iii)
(b) (i), (ii), (iii)
(c) (ii), (iv), (v)
(d)(iii), (iv)
118. Meandrina is:
(a) Brain coral
(b) Sea fan
(c) Sea anemone
(d) Sea pen
119. Which of the following is correct for ctenophores?
(a) Their body bears eight external rows of ciliated comb-plates which help in locomotion
(b) Tentacles if present help in locomotion only
(c) Both (a) and (b)
(d) Sexes are separate
120. In Fasciola:
(a) Fertilization is internal and development is through many larval stages
(b) Flame cells are absent
(c) Cross-fertilization is absent
(d) True coelom is present
121. Which of the following is an odd one out w.r.t. the phylum Platyhelminthes?
(a) Wuchereria
(b) Taenia
(c) Fasciola
(d) Planaria
122. Read the following statements w.r.t. aschelminthes:
(i) Are diploblastic and pseudocoelomate animals
(ii) Their body is circular in cross-section so, are called round worms
(iii) Alimentary canal is incomplete
(iv) Muscular pharynx is present
(v) Are hermaphrodites
123. Read the following statements w.r.t. Aschelminthes/ Nemathelminthes:
(i) Development may be direct or indirect
(ii)Fertilization is internal
(iii) Females are often shorter than males
(iv) Wuchereria causes elephantiasis or filariasis
(v) Ascaris possess cuticle which is resistant to the digestive enzymes of host.

Which of the above statements are correct?
(a) (ii), (iii), (iv), (v)
(b) (i), (ii), (iv), (v)
(c) (i), (ii), (hi)
(d) (iii), (iv), (v)
124. Wuchereria gets transmitted to healthy person through:
(a) Tse tse fly
(b) Culex
(c) Anopheles
(d) Fruit fly
125. Parapodia in Nereis help in:
(a) Swimming
(b) Locomotion
(c) Respiration
(d) More than one option is correct
126. In Annelids:
(a) Neural system consists of paired ganglia connected by lateral nerves to a double ventral nerve cord
(b)Reproduction occur both asexually and sexually
(c) Like Nereis, Pheretima and Hirudinaria have monoecious condition
(d) Aquatic forms are completely absent
127. Read the following statements w.r.t. Arthropoda:
(i) Circulatory system is of open type
(ii) Eyes may be compound or simple
(iii) Are mostly monoecious
(iv) Are mostly viviparous
(v) Development may be direct or indirect

Which of the above statements are correct?
(a) (ii), (iii), (iv)
(b) (i), (ii), (v)
(c) (iii), (iv), (v)
(d) (i), (ii), (iii)
128. Match the columns:

Column - I

A. Malpighian tubules
B. Canal system
C. Hirudin
D. Nematocysts

Column - II

(i) Sponges
(ii) Leech
(iii) Insects
(iv) Hydra
(a) $\mathrm{A}=(\mathrm{i}), \mathrm{B}=(\mathrm{iv}), \mathrm{C}=(\mathrm{ii}), \mathrm{D} m$ (iii)
(b) $\mathrm{A}=($ (iii), $\mathrm{B}=(\mathrm{ii}), \mathrm{C}=(\mathrm{iv}), \mathrm{D}=(\mathrm{i})$
(c) $\mathrm{A}=(\mathrm{iii}), \mathrm{B}=(\mathrm{i}), \mathrm{C}=(\mathrm{ii}), \mathrm{D}=(\mathrm{iv})$
(d) $\mathrm{A}=(\mathrm{i}), \mathrm{B}=(\mathrm{ii}), \mathrm{C}=(\mathrm{iv}), \mathrm{D}=(\mathrm{iii})$
129. Match the columns:

Column-I

A. Gills
B. Tracheal system
C. Book gills
D. Book lings

Column-II

(i) King crab
(ii) Crab, prawn
(iii) Butterfly, cockroach
(iv) Scorpion spider
(a) $\mathrm{A}=$ (ii), $\mathrm{B}=$ (iii), $\mathrm{C}=(\mathrm{i}), \mathrm{D}=$ (iv)
(b) $\mathrm{A}=(\mathrm{ii}), \quad \mathrm{B}=(\mathrm{i}), \quad \mathrm{C}=(\mathrm{iv}), \mathrm{D}=($ (iii)
(c) $\mathrm{A}=$ (iii), $\mathrm{B}=(\mathrm{ii}), \mathrm{C}=(\mathrm{i}), \mathrm{D}=(\mathrm{iv})$
(d) $\mathrm{A}=$ (iv), $\mathrm{B}=(\mathrm{i}), \mathrm{C}=(\mathrm{ii}), \mathrm{D}=($ (iii)
130. Match the columns:

Column-I

A. Pila
B. Octopus
C. Pinctada
D. Aplysia

Column-II

(i) Devil fish
(ii) Pearl oyster
(iii) Sea-hare
(iv) Apple snail
(a) $\mathrm{A}=(\mathrm{ii}), \mathrm{B}=(\mathrm{iii}), \mathrm{C}=(\mathrm{i}), \mathrm{D}=(\mathrm{iv})$
(b) $\mathrm{A}=(\mathrm{iv}), \mathrm{B}=(\mathrm{i}), \mathrm{C}=(\mathrm{iii}), \mathrm{D}=(\mathrm{ii})$
(c) $\mathrm{A}=(\mathrm{ii}), \mathrm{B}=(\mathrm{i}), \mathrm{C}=(\mathrm{iii}), \mathrm{D}=(\mathrm{iv})$
(d) $\mathrm{A}=(\mathrm{iv}), \mathrm{B}=(\mathrm{i}), \mathrm{C}=(\mathrm{ii}), \mathrm{D}=(\mathrm{iii})$
131. The body of molluscs:
(a) Usually remains covered by a calcareous shell
(b) Possess segmentation
(c) Possess distinct head, visceral hump but lack muscular foot
(d) Lack bilateral symmetry
132. Which of the following is an echinoderm?
(a) Ophiura
(b) Octopus
(c) Apis
(d) Dentalium
133. Read the following statements w.r.t. Echinodermata:
(i) Are exclusively marine
(ii)Digestive system in incomplete
(iii) Tube feet is universally absent
(iv) Are spiny bodied
(v) The adults are radially symmetrical but larvas are bilaterally symmetrical.

Which of the above statements are correct?
(a) (i), (iv), (v)
(b) (i), (ii), (iii)
(c) (ii), (iii)
(d) (iv) and (v) only
134. Read the following w.r.t. hemichordates:
(i) Are exclusively fresh water organisms
(ii)Possess metameric segmentation
(iii) Body is cylindrical
(iv) Respiration occur through gills
(v) Excretion of nitrogenous waste occurs through proboscis gland

Which of the above statements are correct?
(a) (iii), (iv), (v)
(b) (i), (ii)
(c) (i), (iii)
(d) (ii), (iv), (v)
135. Which of the following is incorrect?

Non-chordates

(a) Heart is dorsal (if present)
(b)Post-anal tail is absent
(c) Central nervous system is ventral, solid and double
(d) Gill slits are present

Chordates

Heart is ventral
Post-anal tail is present
Central nervous system is dorsal, hollow and single

Pharynx lack gill slits
136. How cephalochordates are different from Urochordates?
(a) Cephalochordates possess notochord throughout their life but Urochordates have it only in larval stage
(b)Cephalochordates are exclusively marine but Urochordates are also found in fresh water
(c) Cephalochordates possess dorsal nervous system but Urochordates have ventral nervous system I
(d)Cephalochordates have ventral heart but Urochordates have dorsal heart
137. How many of the following represents Urochordates (U) and Cephalochordates (C)?

Ascidia, Branchiostoma, Salpa, Doliolum

(a) $\mathrm{U}=2, \mathrm{C}=2$
(b) $\mathrm{U}=1, \mathrm{C}=3$
(c) $\mathrm{U}=3, \mathrm{C}=1$
(d) $\mathrm{U}=4, \mathrm{C}=0$
138. Match the columns:

Column - I

A. Petromyzon
(i) Sea-horse
B. Hippocampus
(ii) Hag-fish
C. Myxine
(iii) Lamprey
D. Exocoetus
(iv) Flying-fish

Column - II

(a) $\mathrm{A}=(\mathrm{i}), \quad \mathrm{B}=(\mathrm{iv}), \mathrm{C}=($ (iii), $\mathrm{D}=($ ii $)$
(b) $\mathrm{A}=(\mathrm{ii}), \mathrm{B}=(\mathrm{iv}), \mathrm{C}=(\mathrm{i}), \quad \mathrm{D}=(\mathrm{iii})$
(c) $\mathrm{A}=$ (iii), $\mathrm{B}=(\mathrm{i}), \mathrm{C}=(\mathrm{iv}), \mathrm{D}=(\mathrm{ii})$
(d) $\mathrm{A}=(\mathrm{iii}), \mathrm{B}=(\mathrm{i}), \quad \mathrm{C}=(\mathrm{ii}), \mathrm{D}=(\mathrm{iv})$
139. How many of the organisms given below belong to the class Chondrichthyes (C), Osteichthyes (0) and Amphibia (A)?

Labeo, Ichthyophis, Bufo, Pterophyllum, Scoliodon, Pristis, Hippocampus, Hyla
(a) $\mathrm{C}=3, \mathrm{O}=3, \mathrm{~A}=2$
(b) $\mathrm{C}=2, \mathrm{O}=3, \mathrm{~A}=3$
(c) $\mathrm{C}=1, \mathrm{O}=4, \mathrm{~A}=3$
(d) $\mathrm{C}=3, \mathrm{O}=2, \mathrm{~A}=3$
140. Choose the correct statement for the class Osteichthyes:
(a) Are mostly oviparous and development is direct
(b) Are mostly hermaphrodites
(c) Fertilization is usually internal
(d) Heart is four chambered
141. Match the columns:

Column - I

A. Bufo
B. Rana
C. Hyla
D. Ichthyophis

Column - II

(i) Tree - frog
(ii) Limbless - amphibia
(iii) Frog
(iv) Toad
(a) $\mathrm{A}=$ (iv), $\mathrm{B}=(\mathrm{iii}), \mathrm{C}=(\mathrm{i}), \mathrm{D}=(\mathrm{ii})$
(b) $\mathrm{A}=(\mathrm{iv}), \mathrm{B}=(\mathrm{i}), \mathrm{C}=(\mathrm{iii}), \mathrm{D}=(\mathrm{ii})$
(c) $\mathrm{A}=(\mathrm{ii}), \mathrm{B}=(\mathrm{iv}), \mathrm{C}=(\mathrm{i}), \mathrm{D}=(\mathrm{iii})$
(d) $\mathrm{A}=(\mathrm{i}), \quad \mathrm{B}=(\mathrm{ii}), \mathrm{C}=(\mathrm{iv}), \mathrm{D}=($ (iii)
142. Read the following statements:
(i) Retention of larval trait is called neoteny
(ii)The largest amphibian is Cryptobranchus
(iii) Seymouria is a connecting link between amphibians and reptiles
(iv) Larva of Ambystoma is called axolotl
(v) Axolotls are unusal amphibians in that they reach adulthood without undergoing metamorphosis

How many of the above statements are correct?
(a) Four
(b) Three
(c) Five
(d) Two
143. Skull is monocondylic in:
(a) Reptiles
(b) Amphibians
(c) Pisces
(d) Both (a) and (c)
144. Read the following statements about the class Reptilia:
(i) Sexes are separate
(ii)Kidneys are metanephric
(iii) Limbs are always present and are pairs
(iv) Possess creeping or crawling mode of locomotion
(v) Represents the first true land vertebrates

Which of the above statements are correct?
(a) (i), (iii)
(b) (i), (ii), (iv), (v)
(c) (i), (ii), (iii), (iv), (v)
(d) (iii), (iv), (v)
145. organisms of the class Aves:
(a) Possess poor olfactory system
(b) Have eyes which lack nictating membrane
(c) Are partial homeotherms
(d) Lack syrinx
146. Heart is always four chambered in:
(a) Mammals
(b) Aves
(c) Reptiles
(d) Both (a) and (b)
147. Given below are the several examples of Eutherians:

Macaca, Homo, Felis, Canis, Panthera, Balaenoptera, Delphinus, Elephas, Equus, Rattus
How many of these belong to the order carnivora (X), Primata (Y) and Cetacea (Z)?
(a) $\mathrm{X}=3, \mathrm{Y}=4, \mathrm{Z}=3$
(b) $\mathrm{X}=3, \mathrm{Y}=2, \mathrm{Z}=2$
(c) $\mathrm{X}=4, \mathrm{Y}=3, \mathrm{Z}=3$
(d) $\mathrm{X}=2, \mathrm{Y}=2, \mathrm{Z}=3$
148. Study the different organisms given below:

Ascaris, Taenia, Sycon, Spongilla, Pleurobrachia, Fasciola, Ctenoplana, Wuchereria, Planaria, Adamsia

How many of the above organisms belong to Porifera, Cnidaria, Ctenophora, Platyhelminthes and Aschelminthes?

Options	Porifera	Cnidaria	Ctenophora	Platyhelminthes	Aschelminthes
(a)	1	2	2	3	2
(b)	3	1	2	2	2
(c)	2	1	2	3	2
(d)	2	2	1	3	2

149. Match the columns

Column-I

A. Malpighian tubules
B. Canal system
C. Hirudin
D. Nematocysts

Column - II

(i) Sponges
(ii) Leech
(iii) Insects
(iv) Hydra
(a) $\mathrm{A}=(\mathrm{i}), \quad \mathrm{B}=(\mathrm{iv}), \mathrm{C}=(\mathrm{ii}), \mathrm{D}=(\mathrm{iii})$
(b) $\mathrm{A}=(\mathrm{iii}), \mathrm{B}=(\mathrm{ii}), \mathrm{C}=(\mathrm{iv}), \mathrm{D}=(\mathrm{i})$
(c) $\mathrm{A}=(\mathrm{iii}), \mathrm{B}=(\mathrm{i}), \mathrm{C}=(\mathrm{ii}), \mathrm{D}=(\mathrm{iv})$
(d) $\mathrm{A}=(\mathrm{i}), \mathrm{B}=(\mathrm{ii}), \mathrm{C}=(\mathrm{iv}), \mathrm{D}=(\mathrm{iii})$
150. Read the following statements:
(i) Cephalopod molluscs and earthworm possess closed circulatory system
(ii)Annelids are pseudocoelomate and platyhelminths are acoelomates
(iii) The body of insects is divisible into head, thorax and abdomen
(iv) In non-chordates, if heart is present, it is dorsal
(v) Syncytial epidermis is present in Ascaris.

Which of the above statements are correct?
(a) (i), (ii)
(b) (i), (iii), (iv), (v)
(c) (iii), (iv), (v)
(d) (i), (iv)
151. Which of the following is incorrect?
(a) All the elements present in a sample of earth's crust are also present in a sample of living tissue
(b) The relative abundance of carbon and hydrogen with respect to other elements is higher in any living organism than in earth's crust
(c) The \% weight of nitrogen in earth's crust is very high in comparison to human body
(d) The \% weight of silicon in earth's crust is very high in comparison to human body
152. Choose the correct one w.r.t. decreasing order of abundance (\% weight) of elements in a cell.
(a) $\mathrm{C}>\mathrm{O}>\mathrm{N}>\mathrm{H}$
(b) $O>C>N>H$
(c) $\mathrm{O}>\mathrm{N}>\mathrm{C}>\mathrm{H}$
(d) $H>N>O>C$
153. For the chemical analysis of a tissue, it is generally ground in which acid?
(a) Trichloroacetic acid
(b) Tri-iodobenzoic acid
(c) Sulphuric acid
(d) Acetic acid
154. Match the columns:

Column - I

A. Basic amino acid
B. Acidic amino acid
C. Neutral amino acid

Column - II

(i) Alanine
(ii) Glycine
(iii) Aspartic acid
(iv) Glutamic acid
(v) Valine
(vi) Arginine
(vii) Lysine
(viii) Pheyl alanine
(a) $A=(i),(i i),(i i i) ; B=(i v),(v) ; C=(v i),(v i i),(v i i i)$
(b) $A=(v i),(v i i),(v i i i) ; B=(i i i),(i v) ; C=(i),(i i),(i i i)$
(c) $A=(v i),(v i i),(i i i) ; B=(i v) ; C=(i),(i i),(v),(v i i i)$
(d) $A=(v),(v i),(v i i) ; B=(i),(i i),(i i i) ; C=(i v),(v i i i),(v i i i)$
155. Identify the amino acids marked as A, B and C :

A

(a) $\mathrm{A}=$ Alanine, $\mathrm{B}=$ Serine, $\mathrm{C}=$ Glycine
(b) $\mathrm{A}=$ Glycine, $\mathrm{B}=$ Serine, $\mathrm{C}=$ Arginine
(c) $\mathrm{A}=$ Glutamic acid, $\mathrm{B}=$ Serine, $\mathrm{C}=$ Alanine
(d) $\mathrm{A}=$ Glycine, $\mathrm{B}=$ Serine, $\mathrm{C}=$ Alanine
156. Given below are the example of few amino acids:

Glutamic acid, lysine, valine, tyrosine, phenylalanine, tryptophan.
How many of the above are aromatic amino acids?
(a) 4
(b) 2
(c) 5
(d) 3
157. Which of the following is correct?
(a) Palmitic acid has sixteen carbon atoms including carboxyl carbon
(b) Arachidonic acid has twenty carbons atoms excluding carboxyl carbon
(c) Stearic acid has eighteen carbon atoms excluding carboxyl carbon
(d) All are correct
158. A triglyceride is formed by esterification of:
(a) One molecule of glycerol and three molecules of fatty acids
(b) One fatty acid molecule and three molecules of glycerol
(c) Three molecules of fatty acids and three molecules of glycerol
(d) None of the above
159. Observe the structural formula of organic compound given below and answer accordingly:

(a) It represents trihydroxypropane
(b) It represents cholesterol- a component of cell membrane
(c) It represents a phospholipid called gingely oil
(d) It represents a phospholipid called lecithin, a component of cell membrane
160. The inorganic compounds like phosphate, sulphate, etc. which becomes available in the filtrate after grinding the living tissue in trichloroacetic acid represents:
(a) Acid-insoluble pool
(b) Acid-soluble pool
(c) Water pool
(d) Gaseous pool
161. The four elements which constitute upto 95% of all elements found in a living system are:
(a) C, H, P, O
(b) C, N, P, O
(c) $\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N}$
(d) S, O, H, C
162. Choose a saturated fatty acid:
(a) Palmitic acid
(b) Linoleic acid
(c) Oleic acid
(d) Arachidonic acid
163. The sum total of acid soluble and acid insoluble (w.r.t grinding a living tissue in trichloroacetic acid) fraction represents the composition of:
(a) Cellular pool
(b) Gene pool
(c) Ecosystem
(d) Non-genetic pool
164. Lipids have a molecular mass of micromolecules, i.e., less than 800 Daltons. They, however, do not appear in acid soluble pool due to their:
(a) Non-polar nature
(b) Polar nature
(c) Both (a) and (b)
(d) None of these
165. Which one represents a triglyceride?
(a) Oil
(b) Phospholipid
(c) Polysaccharides
(d) Chitin
166. A living tissue is taken, grounded in trichloroacetic acid using pestle and mortar, then strained to obtain acid-soluble and acid insoluble fractions. The acid insoluble fractions do not contain:
(a) Alkaloids and flavonoids
(b) Nucleic acids
(c) Lipids
(d) Polysaccharides
167. Study the flow chart given below and identify X and Y according to the statements (i-v) provided.

(i) Monomers are present
(iii) Molecular weight more than 800 Daltons
(v) Amino acids, nucleotides monosaccharides

\boldsymbol{Y}

(a) (ii), (iii)
(i), (iv), (v)
(b)(i), (ii)
(iii),(.iv), (v)
(c) (ii), (iii), (iv)
(i), (v)
(d)(i), (iv), (v)
(ii), (vi)
168. Which of the following is correct for the compounds A and B ?

(A)

(B)
(a) $\mathrm{A}=$ Precursor for biosynthesis of steroid hormone, $\mathrm{B}=\mathrm{It}$ is palmitic acid
(b) $\mathrm{A}=$ Sterol, $\mathrm{B}=$ Unsaturated fatty acid
(c) $\mathrm{A}=$ Benzene derivative, $\mathrm{B}=$ Major component of palm oil
(d) $\mathrm{A}=$ Most abundant steroid in animal tissue, $\mathrm{B}=$ Stearic acid
169. Reducing sugars are sugars which can reduce Cu^{2+} into Cu^{2+}. Which of the following represents noneducing sugar?
(a) Maltose
(b) Sucrose
(c) Glucose
(d) Fructose
170. In a polysaccharide chain like glycogen, the right end is called the reducing end since:
(a) - CHO group is engaged in glycosidic linkage
(b) - CHO group is free
(c) - CH_{3} group is engaged in glycosidic linkage
(d) $-\mathrm{CH}_{3}$ group may be free
171. Read the following statements:
(i) Chitin, starch, glycogen and agar-agar are homopolymers
(ii)In a glycogen, the left end is called the non-reducing end
(iii) Starch forms helical secondary structures but cellulose does not contain complex helices
(iv) Cellulose can easily hold iodine
(v)Chitin is a storage polysaccharide

How many of the above statements are correct?
(a) Two
(b) Three
(c) Four
(d) Five
172. Choose the incorrect option:
(a) Inulin is a heteropolysaccharide
(b) Cellulose gives no colour with iodine solution
(c) Starch gives blue colour and glycogen gives red colour with iodine solution
(d) Inulin is a homopolymer of fructose
173. In a glycogen molecule, successive glucose units are joined together by X and branches are linked together by Y . Identify X and Y .
(a) $\mathrm{X}=1,6-\alpha$-glycosidic bonds, $\mathrm{Y}=1,6-\alpha$-glycosidic bonds
(b) $\mathrm{X}=1,6-\alpha$-glycosidic bonds, $\mathrm{Y}=1,4-\alpha$-glycosidic bonds
(c) $\mathrm{X}=1,4-\alpha$-glycosidic bonds, $\mathrm{Y}=1,6-\alpha$-glycosidic bonds
(d) $\mathrm{X}=1,4-\alpha$-glycosidic bonds, $\mathrm{Y}=1,4-\alpha$-glycosidic bonds
174. Identify the linkages X, Y and Z in the diagram

(a) $\mathrm{X}=\alpha-1,6 ; \mathrm{Y}=\alpha-1,4 ; \mathrm{Z}=\alpha-1,4$
(b) $\mathrm{X}=\beta-1,6 ; \mathrm{Y}=\beta-1,4 ; \mathrm{Z}=\beta-1,4$
(c) $\mathrm{X}=\alpha-1,6 ; \mathrm{Y}=\beta-1,4 ; \mathrm{Z}=\alpha-1,4$
(d) $\mathrm{X}=\beta-1,6 ; \mathrm{Y}=\alpha-1,4 ; \mathrm{Z}=\beta-1,4$
175. The cell wall of higher plants is made of
(a) Homopolymer of glucose
(b) Heteropolymer of glycogen
(c) Homopolymer of glycogen
(d) Homopolymer of galactose
176. How many of compounds given below represent nucleosides (X) and nucleotides (Y).

Adenylic acid, cytidine, AMP, dCTP, Guanosine, dAMP
(a) $X=4, Y=2$
(b) $\mathrm{X}=3, \mathrm{Y}=3$
(c) $\mathrm{X}=2, \mathrm{Y}=4$
(d) $\mathrm{X}=1, Y=5$
177. What does X and Y represent in the structures given below?

(a) $\mathrm{X}=$ Uridylic acid, $\mathrm{Y}=$ Uridine
(b) $\mathrm{X}=$ Uridine, $\mathrm{Y}=$ Uridylic acid
(c) $\mathrm{X}=$ Uridine, $\mathrm{Y}=$ Uracil
(d) $\mathrm{X}=$ Uracil, $\mathrm{Y}=$ Uridine
178. Observe the reaction flow given below:
(i) Guanine $+\mathrm{X}=$ Guanosine
(ii) Guanosine $+\mathrm{Y}=$ Guanylate (or GMP) Identify X and Y
(a) $\mathrm{X}=$ Sugar, $\mathrm{Y}=$ Phosphate group
(b) $\mathrm{X}=$ Pentose sugar, $\mathrm{Y}=$ Phosphate group
(c) $\mathrm{X}=$ Ribose sugar, $\mathrm{Y}=$ Phosphate group
(d) $\mathrm{X}=$ Deoxyribose sugar, $\mathrm{Y}=$ Phosphate group
179. In a DNA molecule, the phosphate group is attached to \qquad carbon of the sugar residue of its own nucleotide and \qquad carbon of the sugar residue of the next nucleotide by bonds:
(a) $3^{\prime}, 5^{\prime}$, glycosidic
(b) 5', 3', phosphodiester
(c) $3^{\prime}, 5^{\prime}$, phosphodiester
(d) $5^{\prime}, 3^{\prime}$, glycosidic
180. A segment of dsDNA has 120 adenine and 120 cytosine bases. The total number of nucleotides present in the segment is:
(a) 120
(b) 480
(c) 60
(d) 240

ANSWER

PHYSICS									
1	2	3	4	5	6	7	8	9	10
C	C	B	C	C	C	B	D	C	D
11	12	13	14	15	16	17	18	19	20
A	C	C	A	C	B	A	B	B	C
21	22	23	24	25	26	27	28	29	30
A	B	C	A	B	A	C	B	C	A
31	32	33	34	35	36	37	38	39	40
B	B	A	C	C	A	C	A	B	A
41	42	43	44	45					
B	A	C	A	A					
CHEMISTRY									
46	47	48	49	50	51	52	53	54	55
A	B	A	C	D	B	B	D	B	D
56	57	58	59	60	61	62	63	64	65
A	D	D	B	C	C	A	C	B	B
66	67	68	69	70	71	72	73	74	75
D	C	A	C	D	A	A	B	D	A
76	77	78	79	80	81	82	83	84	85
B	A	B	A	B	C	D	C	C	D
86	87	88	89	90					
A	B	A	A	D					
BIOLOGY									
91	92	93	94	95	96	97	98	99	100
D	D	A	D	A	D	A	D	D	D
101	102	103	104	105	106	107	108	109	110
C	D	D	A	B	A	A	B	C	D
111	112	113	114	115	116	117	118	119	120
B	B	C	C	A	D	C	A	A	A
121	122	123	124	125	126	127	128	129	130
A	A	B	B	D	A	B	C	A	D
131	132	133	134	135	136	137	138	139	140
A	A	A	A	D	A	C	D	B	A
141	142	143	144	145	146	147	148	149	150
A	C	D	B	A	D	B	C	C	B
151	152	153	154	155	156	157	158	159	160
C	B	A	C	A	D	A	A	D	B
161	162	163	164	165	166	167	168	169	170
C	A	A	A	A	A	A	A	B	B
171	172	173	174	175	176	177	178	179	180
A	A	C	A	A	C	D	C	B	B

